~= | ooking Under the Hooa
of New hm Deploys =

A technical talk / from michael
2022-05-19

the plan

deploy, what is it

deploy, the before times
deploy, the in-between times
deploy, the current world

and yes, some git arcana &

deploy, what is it

deploy, what is it

e robn, "How does deployment?" (2020-02-07, TFCon ¢

e much of this is still true and relevant!

e (except for the parts | rewrote entirely)

4)

rob says

e deployment is two parts
e get the change™ onto servers
e activate the changes

e this is all (mostly) still true!

rob says

uncomfortable
truths

uncomfortable truths

e deploy is by branch, not by MR
e possible to accidentally deploy things
e extremely difficult to work out how to make your change live

e mostly you just have to know for whatever thing you're
changing

e there's few protections in the system

vyhcomfortabletruths

solved* problems &

rob says

e rolloutsa
e rolloutdns

e FailOverCyrus.pl

e | also rewrote this entirely since rob's talk

e ...but!|'m not gonna talk about it now

refreshers and reminders

e every machine has a clone of hm.git
e every machine has a "home branch"
e managed by brancho

e deploy is effectively git pull x 108 (*)

10

refreshers and reminders

activating your changes
e do nothing

e install some config

e restart services

e recompile something

e all of the above [sic]

deploy, the before times

deploy, the ancient times

e bort's birthday, 2015-06-03

e v1 already knew how to rollout

13

bort soT

rollout finished
rollout fastmailbeta finished, 4a22e2a -> 95107e7

bort sot trob: i27 | can't!

trob so1 bort: % | could try, but it's probably not going to work.
bort sot trob: i Sorry, what's that?

trob so1 bort: (%' No, you do it.

bort sot trob: ©%° | got nothing.

trob sot1 bort: (%) Nope.

bort =071 trob: (' | got nothing.

trob sot1 bort: (5 Yeah, nah.

bort zo71 trob: i~ Hmm?

trob sot bort: (% It's too hard!

bort sot trob: i No, you do it.

trob so1 bort: % But it's cold outside and I'm frightened!
bort sot trob: (% Nope.

trob so1 bort: (57 Wat?

bort =071 trob: (%' Yeah, nah.

trob ot bort: (%° No, you do it.

bort zot1 trob: (¥ | can't!

trob so1 bort: (% | got nothing.

bort sot trob: i Yeah, nah.

trob sot bort: 29 | can't!

bort: Result for cyrus : SUCCESS Link to results Tests started 737 minutes ago.

bort zo71 trob: (XY But it's cold outside and I'm frightened!

9051

1930

SCRYING BONES

RITUAL BOWL AND HUMAN BONES
USED FOR WITCH INITIATIONS.

deploy, the before times

bort deploy fastmail/master /r hm!4805 a=woods r=cmorgan

F—-A

(A

bort rollout fastmail

F—-t

(A

16

q bort App 10:41

P-4 deploy finished
[2038229] I: DEPLOY of fastmail/beta: root - Deploy by woods (reason: [none
provided]); No approval required
[2038229] I: deploying
fastmail/beta@58dd125e80659115a74ch89935532a87dfac4fcé
[2038229] I: successful deployment to 3 hosts
[2038229] betautilityl betaweb1 betaweb?2

rollout finished
[3043746] E: fastmail/beta is at c765e1d509180541aa%e1a80d138da291c0cc2e1l,
but last deploy was 58dd125e80659115a74cb89935532a87dfac4fcé, won't build

deploy finished

[2038701] I: DEPLQY of fastmail/master: root - deploy by woods (reason: hm!4805
a=woods r=cmorgan); Approved by michael

[2038701] I: deploying
fastmail/master@0cObfeb2931b96edcd8a033dbé6éadcbcde3d54ff

[2038701] W: Awaiting response from...
[2038701] imap35

[2038701] for 30.00.

Show more

#+ rollout APP 10:49
& fastmail rolled out, 61157d6 => 0cObfeb (compare)

Adds commits

4h86603 Audit logger: include unpending deleted report
868e129 Option to ignore ticket keys when processing email
55a1de8 safe /before/ commit

578c3af Null key warning silence, Pobox category

09e9166 Add pobox processing to helpspot script

da2c053 Fix mobile display issues

98bf51f Change alignment of pricing table

79da654 Signup form tweaks (mostly mobile)

deploy, the before times

e ci-rebuild-branches
e rebuilt beta/dogfood when any MR was updated

e mostly worked

18

general

+ Add a bookmark

@ Gitlab APP 21:39
m & Richard Lovejoy (rjlov)

Pipeline #49933 has failed in 00:22
Branch
master

Failed stage
rebuild

hm Feb 3rd, 2020

& Fastmail (fm)

Pipeline #49934 has failed in 00:19
Branch

master

Failed stage

rebuild

hm Feb 3rd, 2020

& Fastmail (fm)

Pipeline #49935 has failed in 00:19
Branch

master

Failed stage
rebuild

hm Feb 3rd, 2020

@ Gitlab app 21:58
'&D & Fastmail (fm)

Pipeline #49936 has failed in 00:16
Branch
master

Failed stage
rebuild

hm Feb 3rd, 2020

& Fastmail (fm)

Pipeline #49937 has failed in 00:15
Branch

master

Failed stage

rebuild

hm Feb 3rd, 2020

general (adj): Belonging to the whole, overall, universal https:/zoom.us/j/9254351059

February 3rd, 2020 v

Commit

Merge branch 'avalara-db' into 'master’
Failed job

rebuild-branches

Commit

Merge branch 'avalara-db' into 'master’
Failed job

rebuild-branches

Commit

Merge branch 'avalara-db' into 'master

Failed job
rebuild-branches

Commit

Merge branch 'avalara-db' into 'master

Failed job
rebuild-branches

Commit

Merge branch 'avalara-db' into 'master
Failed job

rebuild-branches

19

deploy, the before times

goofy problems:
beta didn't contain your just-pushed changes

beta rebuild between deploy and rollout

E: fastmail/beta is at 2291eb5a, but last deploy was
159de375, won't build

20

deploy, the in-between times

deploy, the in-between times

THE SPIDER
INFESTATION
PROBLEM IS

MOSTLY RESOLVED

22

deploy, the in-between times

mint-tag introduced on an unsuspecting world (2020-05-22)
bort's brain transplant (2020-06-08)
bort learns deploy /rollout (2020-06-18)

death to ci-rebuild-branches (2020-07-16)

23

deploy, the in-between times

e mint-tag is great
e & Minting Tags and Git Arcana & (TFCon, 2020-08-06)

e totally eliminated some classes of errors

24

why bother?

why bother?

e 2021-07-22: .7 Moving to GitHub has launched!

e 2021-08-11: Michael says "Wellll...."

e 2021-09-13: 7 hm.git Deployment Updates

27

Merge
o Log qrd
Merg

& Add1«

[Blog

Me

update exi

Merge br

28

a brief aside on git history

a brief aside on git history

e | care a lot about git history
e and | suggest that maybe you should too

e and that you should start by writing better commit messages

30

good commit messages

e Victoria Dye - "Writing Commits For You, Your Friends, And Your
Future Self" (on YouTube)

e emails to your future self
e should contain
e what - high-level intent of commit

e why - context for the implementation

31

https://www.youtube.com/watch?v=4qLtKx9S9a8

fmvars: remove host partition counts

Long ago, these were important because it wasn't uncommon for a disk
controller to fail and a volume just disappear, but also, it was
possible for us to start up and find that something hadn't been mounted,
and we didn't notice until the root disk failed.

These days that's basically a non-issue. Linux doesn't routinely drop
volumes, even if they're dead underneath (other stuff fails, but they
don't disappear). We have checks in Cyrus startup to prevent start if
the underlying partitions aren't there, and with more stuff moving to
/FS these checks don't even make sense more and more of the time.

But! When we do something with disks, adding or removing mounts, even
temporarily, this will start sending email. And we sigh, and adjust the
number in fmvars just to shut it up and nothing more.

It's useless. Lets kill it.

5 files changed, 31 insertions(+), 99 deletions(-)

32

Initial JMAP endpoint

213 files changed, 14903 insertions(+), 4943 deletions(-)

KX

mint-tag: do not use semilinear merge on QA

Right now, if you deploy two MRs at the same time to QA, you can wind up
in a potentially dangerous situation, because we were using semilinear
merges there.

Imagine a situation like this:

- We have two branches; branch X (MR #123) and branch Y (MR #456)

- Someone asks bort to deploy MRs 123 and 456 to QA

- mint-tag fetches the MRs, then rebases+tmerges X on master, then
rebases Y on top of that (master + X) and merges it in.

- mint-tag then force-pushes the new head of X back to 123, and the
new head of Y back to 456

The last step here is _wrong_, because branch Y will also include the
commits from X!

This is acceptable and is what we want for master deploys, because
"rebase Y on master + X" is safe because we've already committed to
merging X into master. In the QA case, though, it's _not_ safe, because
then it's possible that someone could say "oh, Y is good but X is not"
and decide to deploy Y to master, unknowingly deploying the changes from
X, which are now in the branch for Y!

We can fix this by just turning off semilinear merges for QA, and
turning on rebases instead. With this mint-tag config, the situation
above turns into:

- Someone asks bort to deploy MRs 123 and 456 to QA

- mint-tag does the fetches, then rebases both X and Y on current
master, and does an octopus merge of the two of them to form a QA
branch. (This is exactly what we do for dogfood and beta, with the
addition of a rebase on master.)

- mint-tag then force-pushes the new head of X back to 123, and the
new head of Y back to 456. This is fine, because all we've done is a
rebase on current master; it's as though you'd just clicked the Rebase
button in the GitLab UI.

1 file changed, 1 insertion(+), 1 deletion(-)

34

anyway, deploy

why bother?

bort APP 18:30
I | fainted during deploy 20211206.022 (started by neilj in #plumbing, 11 minutes and

4 seconds ago), so I'm not sure what state that's in. Sorry!

36

why bother?

deploy state was in memory in bort
bort can reboot himself when he can't get a connection to Slack
you had to log-dive to see what was going on

could be dangerous! after disconnect, we dropped the lock

37

why bother

deploys - Dec 13th, 2021
bort APP 13:59

rollout 20211213.020 (fastmail) finished: rollout succeeded; all done!

started by woods in #plumbing, 24 minutes and 39 seconds ago

38

deploy, the current world

deploy, the current world

e deploys are now run via the job queue
e |logic now lives in ME::Deploy, not in bort

e rollouts are now both smarter and (consequently) faster

40

deploys via job queue

e we have a job queue (landed April 2019)
e used for migrations, fixaccount, sending welcome messages

 and now, deploys

41

deploys via job queue

job queue got some improvements along the way
It now restarts safely

and runs in more places (webs, build1)

these are plumbing details, not interesting for this

...but the commit messages tell the story &

42

deploys via job queue

sub execute ($self) {
my $deploy = ME::Deploy->retrieve($self->deploy_id);

eval { $deploy->execute };

1t ($@) {
$Logger->log(["deploy failed: %s", $@ 1);
return $self->cancel;

¥

$self->mark_done;

¥

ME::JobQueue::Job::Deploy

43

sub execute ($self) {
if ($self->is_done) {
$Logger->log_fatal(["cannot re-execute completed deploy (%s)", $self->id]);
)

try {
$self->prepare_branch;

$self->deploy_branch;
$self->do_rollout;

} catch {
my $err = $_;
$self->_handle_exception($err);
s

return $self->mark_done;

ME::Deploy 44

deploys via job queue

e bort can now recover from a slack reconnection

e via a convoluted process involving Consul, 1O::Async, manual file
descriptor handling, and more

e this is very interesting, but | will mostly not talk about it here

45

=head1 WHAT EVEN IS THIS NONSENSE

The purpose of this class is to run in a forked process and listen for consul
events. It needs to run in a subprocess because the consul event API works by
making blocking HTTP calls: i.e., to listen for an event, you make an HTTP
call with a timeout, and it returns when either there an event arrives oruntil
the timeout has expired. We _could_ use an async consul, which would run a
callback on the completion of the HTTP call, but really we need to do this in
a loop, which means we'd wind up in callback hell pretty quickly.

But there is another wrinkle: because this code is running in a subprocess,
we've closed down all the IO handles before fork, including notably, our
connection to Slack. That means we can't just call methods on the slack
reactor, because they'll never get sent. So instead, our parent sets up a pipe
and passes a file descriptor to us, which we open here. Data we want to send
to slack gets JSON-encoded and piped back to our parent via ->write_handle
here, which our parent decodes and dispatches.

The remaining fiddliness of this code is because consul events are not
guaranteed to arrive in any particular order (or at all), so we need to be
resilient and be able to cope with that. This has a couple of knock-on
effects, namely that we poll more often than we should really ever need to,
and also that we have to do a bunch of housekeeping to make sure the
instigating event has the correct reactji at all times.

Bort::Reactor::Deploy::Task::ViaJobQueue::Watcher

46

deploys via job queue

e ME::Deploy is mostly coordination logic

e under the hood, it runs the same thing it always has

47

deploys via job queue

e ME::Deploy is mostly coordination logic

e under the hood, it runs the same thing it always has”

$self->prepare_branch; # runs mint-tag
$self->deploy_branch; # runs fm-deployo
$self->do_rollout; # runs Rollout.pl

ME::Deploy

48

mint-tag

mint-tag

builds branches from labeled merge requests
gained some new features as part of this work
notably: how to do semi-linear merges

I'll spare you the details (it's all in the commit messages)

50

$

mint-tag

ME::Deploy runs:

mint-release-branch -c /etc/minttag/master.toml --mr 10682 --mr 10713

which, for every MR:

e fetches, rebases, merges it, then force-pushes it back to
branch

then pushes to master

51

e this all works a treat

e except for...

mint-tag

52

mint-tag

e this all works a treat

e except for...

jmapui: fix Vite warning about fs access outside of root directory
Merge branch 'pusher-add-check' into 'master’

Add pusher 'check' method to see if channel is still active

Merge silly-change into master

fmdev michael: silly change

ME::Deploy: run mint-tag in verbose mode

Lifecycle: Use ME::Modern

fmdev rasha: reformat a tiny bit

batch deploys: we must pass MRs into the build!

Merge branch 'ldap-safe' into 'master’

Idap stuff that's safe to remove and doesn't need complicated deploys

a git bug! "

P

a git bug! "

 which | am going to tell you about

e vou knew what this was &

* SOrry not-sorry

55

P

a git bug! "

mint-tag operates with shas directly, not with ref names
e |.e.itsays 94a46e732e8bf1ceab2 instead of michael/movemate

git rebase main topic is shorthand for
git checkout topic; git rebase main

after this, you're on branch topic, freshly rebased

mint-tag uses this shorthand

56

P

a git bug! "

e § git rebase main bada4ab
 what should happen
e o1t checkout bad4a4a5; git rebase mailn

e you're left with detached HEAD, with topic freshly rebased

57

P

a git bug! "

e this was broken in git!
e if bad4a4a5 needed rebasing, everything was fine

e if badadab was a fast-forward operation (i.e., was already up to
date), main was fast-forwarded

e when mint-tag said checkout main && merge --no-ff ba4a4ab,
main had moved out from under it!

58

P

a git bug! "
e fixed in git v2.36

[~/code/src/git] $ git log --oneline --grep McClimon
bdff97a3 rebase: set REF_HEAD_DETACH 1in
checkout_up_to_date()

59

achievement unlocked

The latest feature release Git v2.36.0 1s now avallable at the
usual places. It is comprised of 717 non-merge commits since
v2.35.0, contributed by 96 people, 26 of which are new faces [*].

New contributors whose contributions weren't in v2.35.0 are as follows.
Welcome to the Git development community!

., Michael McClimon,

60

what was | talking about again?

deploys via job queue

e ME::Deploy is mostly coordination logic

e under the hood, it runs the same thing it always has”

$self->prepare_branch; # runs mint-tag
$self->deploy_branch; # runs fm-deployo
$self->do_rollout; # runs Rollout.pl

ME::Deploy

62

rollout improvements

 oh yeah | rewrote rollout entirely”

e it's way faster than it was

bort APP 14:38
X rollout 20220511.029 (fastmail) finished: rollout succeeded; all done!

started by woods in #plumbing, 6 minutes and 33 seconds ago

@9 bort APP 14:57
X rollout 20220511.030 (fastmail) finished: rollout succeeded; all done!

started by rasha in #plumbing, 2 minutes and 54 seconds ago

X

rollout, before

BuildHtdocs.pl

rebuild the frontend (zolasite, jmapui, 110n, etc.)
rsync them to the mirrors

rsync from there to the frontends

on each web, stop apache, rsync the frontend in, start apache

64

rollout, now

my $rollout = ME::Rollout->new({

target => $target,

verbose => $opt->verbose,

should_sync => $opt->sync,
defined_kv(restart_apache => $opt->restart_apache),

defined_kv(rebuild_js
3);

$rollout->execute;

utils/Rollout.pl

=> $opt->rebuild_js),

65

rollout, now

e still does all the same things

e ..butonlyifitneeds to

66

sub execute ($self) {

$self->establish_lock; #
$self->prepare_build_dir; # 2
$self->build_l10n_files; # 3
$self->build_htdocs; # 4

return unless $self->should_sync;

$self->sync_to_mirror; # 5
$self->sync_to_frontends; # 6
$self->sync_to_webs; # 7

my $rev_after = $self->store_rollout_sha_in_consul;
$self->finalize($self->previous_rollout_sha, $rev_after);

b

ME::Rollout

67

rollout, now: setup
1) we establish a lock, to make sure you can't rollout twice at the
same time

2) update our working dir (on build1) to the right commit

e by this point, mint-tag has pushed the branch and the deploy
has happened

68

rollout, now: build frontend

e 3) build the localization files
e is this even still necessary? (Probably, for now)
e 4) build the necessary JS and HTML

e this just calls make to do the work

69

rollout, now: conditional builds

sub build_l1l10n_files ($self) {
return unless $self->should_build_js;

¥

sub build_htdocs ($self) {
return unless $self->should_build_js;

70

rollout, now: conditional builds

has should_build_js => (

1S => 'ro',
init_arg => 'rebuild_js',
lazy => 1,

default => sub ($self) {
my $files = $self->files_touched_since_last_rollout;

return 1 unless $files; # dunno what changed? default to build

return any {; /*(htdocs|localisation)/n } @$files;

T,
) ;

71

rollout, now: conditional builds

e files_touched_since_last_rollout
e we store rollout shas in consul, so we know what has changed
e and we can take action on it!

e if we haven't touched JS, don't rebuild JS

e if we haven't touched perl, don't restart apache

e maybe later, other smarts

72

rollout, now: sync to and fro

we still must sync to mirror (5) and then out to the frontends (6;
for static assets) and backends (7; needed by JMAPApp)

syncing frontends is now much faster

e we now do it from the local mirror (thanks Joe!)

e we nhow do it in parallel

73

rollout, now: no-restart JS changes

e JMAPApp no longer needs restart for JS changes
e Rik and | took a pass at this in July '21 and failed

e now it works

74

rollout, now: no-restart JS changes

e there are two files, bootstrap.html and bootstrap.hash
e before, the JS build copied them into the root of jmapui/
 which required a restart of apache to pick them up

e because rsync might copy the bootstrap files before
everything else was ready

75

rollout, now: no-restart JS changes

now, JS build leaves them inside the build directory (not in the
root)

and rollout symlinks them into place after the rsync

JMAPApp watches for the inode to change and reloads the
bootstrap files

this is a big win for speed

76

rollout, now: no-JS apache restarts

the opposite way is faster too!

If the JS files haven't changed, we don't need to re-bundle the
frontend!

so we can skip the syncing entirely and just do the restarts

this is also a big win for speed!

77

rollout, now:

e |t's fast
e it's maintainable (BuildHtdocs.pl had effectively no subroutines)

e |t does what you want more of the time

78

other new toys

e deploys can now be manually locked
e deploy fastmail/all

e deploy/mr 123

79

deploy fastmail/all

LP 62992101
bort: add deploy /all

created by robn on 5/17/2021, 9:05:43 PM
Never marked as done

deploy fastmail/all

e made possible by moving deploys into job queue

e implemented by ME::Deploy::Batch

81

deploy fastmail/all

when you deploy fastmail/all /mr 123,

bort takes a lock and inserts a batch-deploy into the job queue
when that runs, it creates 4 more jobs

which all run in sequence

and bort watches the batch to wait for its completion

simple matter of programming!

82

deploy /mr 123

one of the uncomfortable truths; deploy is unsafe!

you want to deploy your trivial MR, 1123 to all four environments
you rebase it and click the merge button in GitLab

before you deploy master, someone merges 125

you deploy master for 1123, unknowingly sending '125 along for
the ride

83

deploy /mr 123

the biggest change, and the most important

with fastmail/all, significantly increases safety of deploys

you can how do a final test on QA without merging to master
prepares the way for an eventual move to GitHub

don't worry: robn has already found new things to ask me for

84

INn conclusion

write good commit messages
test your changes

get your changes onto servers
make your changes actually go

It's safe and fast and good

85

86

