
!
 Looking Under the Hood
of New hm Deploys

!

A technical talk // from michael
2022-05-19

the plan

• deploy, what is it

• deploy, the before 3mes

• deploy, the in-between 3mes

• deploy, the current world

• and yes, some git arcana

!

2

deploy, what is it

3

deploy, what is it

• robn, "How does deployment?" (2020-02-07, TFCon #4)

• much of this is sDll true and relevant!

• (except for the parts I rewrote enDrely)

4

rob says

• deployment is two parts

• get the change* onto servers

• ac6vate the changes

• this is all (mostly) s6ll true!

5

rob says

uncomfortable
 truths

6

uncomfortable truths

• deploy is by branch, not by MR

• possible to accidentally deploy things

• extremely difficult to work out how to make your change live

• mostly you just have to know for whatever thing you're
changing

• there's few protec@ons in the system

7

uncomfortable truths

solved* problems
!

8

rob says
• rolloutsa

• rolloutdns

• FailOverCyrus.pl

• I also rewrote this en-rely since rob's talk

• ...but I'm not gonna talk about it now

9

refreshers and reminders

• every machine has a clone of hm.git

• every machine has a "home branch"

• managed by brancho

• deploy is effec9vely git pull × 108 (

!

)

10

refreshers and reminders

• acvang your changes

• do nothing

• install some config

• restart services

• recompile something

• all of the above [sic]

11

deploy, the before .mes

12

deploy, the ancient /mes

• bort's birthday, 2015-06-03

• v1 already knew how to rollout

13

14

deploy, the ancient /mes

15

deploy, the before .mes

• bort deploy fastmail/master /r hm!4805 a=woods r=cmorgan

•

⏳

• bort rollout fastmail

•

⏳

16

17

deploy, the before .mes
• ci-rebuild-branches

• rebuilt beta/dogfood when any MR was updated

• mostly worked

18

19

deploy, the before .mes

• goofy problems:

• beta didn't contain your just-pushed changes

• beta rebuild between deploy and rollout

• E: fastmail/beta is at 2291eb5a, but last deploy was
159de375, won't build

20

deploy, the in-between 0mes

21

deploy, the in-between 0mes

22

deploy, the in-between 0mes

• mint-tag introduced on an unsuspec2ng world (2020-05-22)

• bort's brain transplant (2020-06-08)

• bort learns deploy /rollout (2020-06-18)

• death to ci-rebuild-branches (2020-07-16)

23

deploy, the in-between 0mes

• mint-tag is great

•

!

 Min.ng Tags and Git Arcana

!

 (TFCon, 2020-08-06)

• totally eliminated some classes of errors

24

why bother?

25

26

why bother?

• 2021-07-22:
!

 Moving to GitHub has launched!

• 2021-08-11: Michael says "Wellll...."

• 2021-09-13:

!

 hm.git Deployment Updates

27

28

a brief aside on git history

29

a brief aside on git history

• I care a lot about git history

• and I suggest that maybe you should too

• and that you should start by wri6ng be7er commit messages

30

good commit messages

• Victoria Dye - "Wri0ng Commits For You, Your Friends, And Your
Future Self" (on YouTube)

• emails to your future self

• should contain

• what - high-level intent of commit

• why - context for the implementa0on

31

https://www.youtube.com/watch?v=4qLtKx9S9a8

 fmvars: remove host partition counts

 Long ago, these were important because it wasn't uncommon for a disk
 controller to fail and a volume just disappear, but also, it was
 possible for us to start up and find that something hadn't been mounted,
 and we didn't notice until the root disk failed.

 These days that's basically a non-issue. Linux doesn't routinely drop
 volumes, even if they're dead underneath (other stuff fails, but they
 don't disappear). We have checks in Cyrus startup to prevent start if
 the underlying partitions aren't there, and with more stuff moving to
 ZFS these checks don't even make sense more and more of the time.

 But! When we do something with disks, adding or removing mounts, even
 temporarily, this will start sending email. And we sigh, and adjust the
 number in fmvars just to shut it up and nothing more.

 It's useless. Lets kill it.

 5 files changed, 31 insertions(+), 99 deletions(-)

32

 Initial JMAP endpoint

 213 files changed, 14903 insertions(+), 4943 deletions(-)

33

 mint-tag: do not use semilinear merge on QA

 Right now, if you deploy two MRs at the same time to QA, you can wind up
 in a potentially dangerous situation, because we were using semilinear
 merges there.

 Imagine a situation like this:

 - We have two branches; branch X (MR #123) and branch Y (MR #456)
 - Someone asks bort to deploy MRs 123 and 456 to QA
 - mint-tag fetches the MRs, then rebases+merges X on master, then
 rebases Y on top of that (master + X) and merges it in.
 - mint-tag then force-pushes the new head of X back to 123, and the
 new head of Y back to 456

 The last step here is _wrong_, because branch Y will also include the
 commits from X!

 This is acceptable and is what we want for master deploys, because
 "rebase Y on master + X" is safe because we've already committed to
 merging X into master. In the QA case, though, it's _not_ safe, because
 then it's possible that someone could say "oh, Y is good but X is not"
 and decide to deploy Y to master, unknowingly deploying the changes from
 X, which are now in the branch for Y!

 We can fix this by just turning off semilinear merges for QA, and
 turning on rebases instead. With this mint-tag config, the situation
 above turns into:

 - Someone asks bort to deploy MRs 123 and 456 to QA
 - mint-tag does the fetches, then rebases both X and Y on current
 master, and does an octopus merge of the two of them to form a QA
 branch. (This is exactly what we do for dogfood and beta, with the
 addition of a rebase on master.)
 - mint-tag then force-pushes the new head of X back to 123, and the
 new head of Y back to 456. This is fine, because all we've done is a
 rebase on current master; it's as though you'd just clicked the Rebase
 button in the GitLab UI.

 1 file changed, 1 insertion(+), 1 deletion(-)

34

anyway, deploy

35

why bother?

36

why bother?

• deploy state was in memory in bort

• bort can reboot himself when he can't get a connec7on to Slack

• you had to log-dive to see what was going on

• could be dangerous! a>er disconnect, we dropped the lock

37

why bother

38

deploy, the current world

39

deploy, the current world

• deploys are now run via the job queue

• logic now lives in ME::Deploy, not in bort

• rollouts are now both smarter and (consequently) faster

40

deploys via job queue

• we have a job queue (landed April 2019)

• used for migra>ons, fixaccount, sending welcome messages

• and now, deploys

41

deploys via job queue

• job queue got some improvements along the way

• it now restarts safely

• and runs in more places (webs, build1)

• these are plumbing details, not interes>ng for this

• ...but the commit messages tell the story

!

42

deploys via job queue
sub execute ($self) {
 my $deploy = ME::Deploy->retrieve($self->deploy_id);

 eval { $deploy->execute };
 if ($@) {
 $Logger->log(["deploy failed: %s", $@]);
 return $self->cancel;
 }

 $self->mark_done;
}

ME::JobQueue::Job::Deploy 43

sub execute ($self) {
 if ($self->is_done) {
 $Logger->log_fatal(["cannot re-execute completed deploy (%s)", $self->id]);
 }

 try {
 $self->prepare_branch;
 $self->deploy_branch;
 $self->do_rollout;
 } catch {
 my $err = $_;
 $self->_handle_exception($err);
 };

 return $self->mark_done;
}

ME::Deploy 44

deploys via job queue

• bort can now recover from a slack reconnec2on

• via a convoluted process involving Consul, IO::Async, manual file
descriptor handling, and more

• this is very interes2ng, but I will mostly not talk about it here

45

=head1 WHAT EVEN IS THIS NONSENSE

The purpose of this class is to run in a forked process and listen for consul
events. It needs to run in a subprocess because the consul event API works by
making blocking HTTP calls: i.e., to listen for an event, you make an HTTP
call with a timeout, and it returns when either there an event arrives oruntil
the timeout has expired. We _could_ use an async consul, which would run a
callback on the completion of the HTTP call, but really we need to do this in
a loop, which means we'd wind up in callback hell pretty quickly.

But there is another wrinkle: because this code is running in a subprocess,
we've closed down all the IO handles before fork, including notably, our
connection to Slack. That means we can't just call methods on the slack
reactor, because they'll never get sent. So instead, our parent sets up a pipe
and passes a file descriptor to us, which we open here. Data we want to send
to slack gets JSON-encoded and piped back to our parent via ->write_handle
here, which our parent decodes and dispatches.

The remaining fiddliness of this code is because consul events are not
guaranteed to arrive in any particular order (or at all), so we need to be
resilient and be able to cope with that. This has a couple of knock-on
effects, namely that we poll more often than we should really ever need to,
and also that we have to do a bunch of housekeeping to make sure the
instigating event has the correct reactji at all times.

Bort::Reactor::Deploy::Task::ViaJobQueue::Watcher 46

deploys via job queue

• ME::Deploy is mostly coordina5on logic

• under the hood, it runs the same thing it always has

47

deploys via job queue

• ME::Deploy is mostly coordina5on logic

• under the hood, it runs the same thing it always has*

$self->prepare_branch; # runs mint-tag
$self->deploy_branch; # runs fm-deployo
$self->do_rollout; # runs Rollout.pl

ME::Deploy 48

mint-tag

49

mint-tag

• builds branches from labeled merge requests

• gained some new features as part of this work

• notably: how to do semi-linear merges

• I'll spare you the details (it's all in the commit messages)

50

mint-tag

• ME::Deploy runs:

$ mint-release-branch -c /etc/minttag/master.toml --mr 10682 --mr 10713

• which, for every MR:

• fetches, rebases, merges it, then force-pushes it back to
branch

• then pushes to master

51

mint-tag

• this all works a treat

• except for...

52

mint-tag

• this all works a treat

• except for...

53

a git bug!
!

54

a git bug!
!

• which I am going to tell you about

• you knew what this was

!

• sorry not-sorry

"

55

a git bug!
!

• mint-tag operates with shas directly, not with ref names

• i.e. it says 94a46e732e8bf1cea62 instead of michael/movemate

• git rebase main topic is shorthand for
git checkout topic; git rebase main

• a8er this, you're on branch topic, freshly rebased

• mint-tag uses this shorthand

56

a git bug!
!

• $ git rebase main ba4a4a5

• what should happen

• git checkout ba4a4a5; git rebase main

• you're le2 with detached HEAD, with topic freshly rebased

57

a git bug!
!

• this was broken in git!

• if ba4a4a5 needed rebasing, everything was fine

• if ba4a4a5 was a fast-forward opera8on (i.e., was already up to
date), main was fast-forwarded

• when mint-tag said checkout main && merge --no-ff ba4a4a5,
main had moved out from under it!

58

a git bug!
!

• fixed in git v2.36

[~/code/src/git] $ git log --oneline --grep McClimon

bdff97a3 rebase: set REF_HEAD_DETACH in

checkout_up_to_date()

59

achievement unlocked
The latest feature release Git v2.36.0 is now available at the
usual places. It is comprised of 717 non-merge commits since
v2.35.0, contributed by 96 people, 26 of which are new faces [*].

New contributors whose contributions weren't in v2.35.0 are as follows.
Welcome to the Git development community!

 ..., Michael McClimon, ...

60

what was I talking about again?

61

deploys via job queue

• ME::Deploy is mostly coordina5on logic

• under the hood, it runs the same thing it always has*

$self->prepare_branch; # runs mint-tag
$self->deploy_branch; # runs fm-deployo
$self->do_rollout; # runs Rollout.pl

ME::Deploy 62

rollout improvements

• oh yeah I rewrote rollout en/rely*

• it's way faster than it was

63

rollout, before

• BuildHtdocs.pl

• rebuild the frontend (zolasite, jmapui, l10n, etc.)

• rsync them to the mirrors

• rsync from there to the frontends

• on each web, stop apache, rsync the frontend in, start apache

64

rollout, now
my $rollout = ME::Rollout->new({
 target => $target,
 verbose => $opt->verbose,
 should_sync => $opt->sync,
 defined_kv(restart_apache => $opt->restart_apache),
 defined_kv(rebuild_js => $opt->rebuild_js),
});

$rollout->execute;

u"ls/Rollout.pl 65

rollout, now

• s#ll does all the same things

• ...but only if it needs to

66

sub execute ($self) {
 $self->establish_lock; # 1
 $self->prepare_build_dir; # 2

 $self->build_l10n_files; # 3
 $self->build_htdocs; # 4

 return unless $self->should_sync;

 $self->sync_to_mirror; # 5
 $self->sync_to_frontends; # 6
 $self->sync_to_webs; # 7

 my $rev_after = $self->store_rollout_sha_in_consul;
 $self->finalize($self->previous_rollout_sha, $rev_after);
}

ME::Rollout 67

rollout, now: setup

• 1) we establish a lock, to make sure you can't rollout twice at the
same 8me

• 2) update our working dir (on build1) to the right commit

• by this point, mint-tag has pushed the branch and the deploy
has happened

68

rollout, now: build frontend

• 3) build the localiza1on files

• is this even s1ll necessary? (Probably, for now)

• 4) build the necessary JS and HTML

• this just calls make to do the work

69

rollout, now: condi.onal builds
sub build_l10n_files ($self) {
 return unless $self->should_build_js;
 ...
}

sub build_htdocs ($self) {
 return unless $self->should_build_js;
 ...
}

70

rollout, now: condi.onal builds
has should_build_js => (
 is => 'ro',
 init_arg => 'rebuild_js',
 lazy => 1,
 default => sub ($self) {
 my $files = $self->files_touched_since_last_rollout;

 return 1 unless $files; # dunno what changed? default to build

 return any {; /^(htdocs|localisation)/n } @$files;
 },
);

71

rollout, now: condi.onal builds
• files_touched_since_last_rollout

• we store rollout shas in consul, so we know what has changed

• and we can take ac4on on it!

• if we haven't touched JS, don't rebuild JS

• if we haven't touched perl, don't restart apache

• maybe later, other smarts

72

rollout, now: sync to and fro

• we s&ll must sync to mirror (5) and then out to the frontends (6;
for sta&c assets) and backends (7; needed by JMAPApp)

• syncing frontends is now much faster

• we now do it from the local mirror (thanks Joe!)

• we now do it in parallel

73

rollout, now: no-restart JS changes

• JMAPApp no longer needs restart for JS changes

• Rik and I took a pass at this in July '21 and failed

• now it works

74

rollout, now: no-restart JS changes

• there are two files, bootstrap.html and bootstrap.hash

• before, the JS build copied them into the root of jmapui/

• which required a restart of apache to pick them up

• because rsync might copy the bootstrap files before
everything else was ready

75

rollout, now: no-restart JS changes

• now, JS build leaves them inside the build directory (not in the
root)

• and rollout symlinks them into place a<er the rsync

• JMAPApp watches for the inode to change and reloads the
bootstrap files

• this is a big win for speed

76

rollout, now: no-JS apache restarts

• the opposite way is faster too!

• if the JS files haven't changed, we don't need to re-bundle the
frontend!

• so we can skip the syncing en?rely and just do the restarts

• this is also a big win for speed!

77

rollout, now:

• it's fast

• it's maintainable (BuildHtdocs.pl had effec9vely no subrou9nes)

• it does what you want more of the 9me

78

other new toys

• deploys can now be manually locked

• deploy fastmail/all

• deploy /mr 123

79

deploy fastmail/all

80

deploy fastmail/all

• made possible by moving deploys into job queue

• implemented by ME::Deploy::Batch

81

deploy fastmail/all

• when you deploy fastmail/all /mr 123,

• bort takes a lock and inserts a batch-deploy into the job queue

• when that runs, it creates 4 more jobs

• which all run in sequence

• and bort watches the batch to wait for its comple<on

• simple ma=er of programming!

82

deploy /mr 123

• one of the uncomfortable truths; deploy is unsafe!

• you want to deploy your trivial MR, !123 to all four environments

• you rebase it and click the merge buAon in GitLab

• before you deploy master, someone merges !125

• you deploy master for !123, unknowingly sending !125 along for
the ride

❗

83

deploy /mr 123

• the biggest change, and the most important

• with fastmail/all, significantly increases safety of deploys

• you can now do a final test on QA without merging to master

• prepares the way for an eventual move to GitHub

• don't worry: robn has already found new things to ask me for

84

in conclusion

• write good commit messages

• test your changes

• get your changes onto servers

• make your changes actually go

• it's safe and fast and good

85

!"#

86

